65. Considerations of a Vapour Pressure-Temperature Equation, and their Relation to Burnop's Boiling-point Function.

By William H. Banks.

Abstract

The constants A and B in the vapour-pressure equation $\log p=A-B / T$ have been examined. The approximate constancy of A is discussed. Heats of vaporisation calculated from B are shown to be related to the formula weight M by the approximate empirical equation $\log \Delta H_{0}=4.93-4 / M^{\frac{1}{2}}$. Burnop's empirical function $8 M^{\frac{1}{2}}+$ $M \log T_{\mathrm{B}}$ is derived, and shown to be proportional to the formula weight, from which follows its additive nature. By the use of 4, as demanded by theory, rather than 8 as the coefficient of $M^{\frac{1}{2}}$, the apparent constitutive nature disappears.

It is well known that the vapour pressures of most liquids can be represented with considerable accuracy over fairly wide ranges of temperature by Young's empirical equation $\log p=A-B / T$, where A and B are constants for a particular compound. Indeed, much of the vapour-pressure data given in the International Critical Tables is represented in this form. Examination of these data brings out two facts: (1) that A is of the same order of magnitude for most compounds, variations being about 10%, and (2) that B shows a marked and regular trend with formula weight. It is the object of this paper to examine these facts and to show what bearing some of the considerations have on a certain empirical relation involving boiling point.

The thermodynamic basis of Young's relation may be considered as follows. For a substance whose vapour is assumed to behave as a perfect gas and whose molar volume in the liquid state is negligible in comparison with the volume in the gas state, we may write

$$
\begin{equation*}
\delta \log _{\mathrm{e}} p=\left(\Delta H / \boldsymbol{R} T^{2}\right) \delta T \tag{1}
\end{equation*}
$$

Here \boldsymbol{R} is the gas constant, p the vapour pressure at absolute temperature T, and ΔH the heat of vaporisation. The last is itself a function of temperature and can be expressed in terms of empirical constants a, b, etc., and the difference in heat capacity between the liquid and the vapour, $\Delta_{0} C_{p}$ (the value at $T=0^{\circ} \mathrm{K}$. calculated empirically):

$$
\Delta H=\Delta H_{0}+\Delta_{0} C_{p} T+\frac{1}{2} a T^{2}+\frac{1}{3} b T^{3}+\ldots
$$

Here ΔH_{0} is the heat of vaporisation at the absolute zero, although a value so calculated from such an empirical relation obtained at much higher temperatures may not necessarily be identical with the true value, the error being dependent on the range of temperature over which the empirical relation is valid. Equation (1) is now integrated between the limits of p at T and 1 atmosphere (760 mm .) at the boiling point T_{B}, the necessity of considering a chemical constant being thus eliminated. We obtain

$$
\begin{equation*}
\log p=\log 760+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}-\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T+\left(\Delta_{0} C_{p} / \boldsymbol{R}\right) \log T / T_{\mathrm{B}}+ \tag{2}
\end{equation*}
$$

The fourth and succeeding terms, which include temperature coefficients of $\Delta_{0} C_{p}$ and powers of ($T-T_{\mathrm{B}}$), may be shown to affect (2) by not more than 10% for not too great a temperature range. A survey of the literature indicates that for normal liquids $\Delta_{0} C_{p} / \boldsymbol{R}$ lies well within the limits of $1-10$ units. However, even if a value of 10 is assumed,
for a liquid boiling at 50° a range of 50° below this would give the fourth term as 0.7 unit, and for one boiling at 200° the same range below would give the value of $0 \cdot 4$. The succeeding terms are considerably less.

For this reason it is possible to identify A in the Young equation with $\log 760+$ $\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}$ with an accuracy of about 10% for not too large a temperature range. On the assumption that $\Delta H_{0} / T_{\mathrm{B}}$ is given by 87.8 (the value of Trouton's constant in Joules/degree), its value is $7 \cdot 46$, a value very close to the individual values of A for many substances.

Comparing B with $\Delta H_{0} / 2 \cdot 303 \boldsymbol{R}$, values of ΔH_{0} (in Joules per mol.) have been calculated from the values of B given in the International Critical Tables (Vol. III), and in one or two cases from vapour-pressure-temperature data. The data are given in Table I, in

which is indicated the range of temperature over which Young's simple two-term equation is valid. For compounds which exhibit normal behaviour, as distinct from those repre-

Table I.

Substance.	1/M ${ }^{\frac{1}{4} \text {. }}$	Temp. range.	ΔH_{0}.
${ }^{\text {che }}$	$0 \cdot 250$	-174° to -163°	8517
$\mathrm{C}_{2} \mathrm{H}_{4}$	$0 \cdot 189$	-160 ,, -104	14396
	$0 \cdot 183$	-140 ", - 90	16207
$\mathrm{CH}_{3} \mathrm{~F}$	$0 \cdot 170$	-102 ", - 76	17053
$\mathrm{C}_{3} \mathrm{H}_{4}$	$0 \cdot 158$	- 73 ", - 13	21372
$\mathrm{C}_{3} \mathrm{H}_{6}$	$0 \cdot 154$	- 95 ," - 48	19693
$\mathrm{C}_{3} \mathrm{H}_{8}$	$0 \cdot 151$	-136 ,, - 40	19037
$\mathrm{OMe}^{\text {a }}$	$0 \cdot 147$	$-70 \sim-20$	23025
CH_{3}	$0 \cdot 140$	-19 ", +20	21988
$\mathrm{C}_{4} \mathrm{H}$	$0 \cdot 131$	$-100 \quad$ + 12	23450
OMeEt	$0 \cdot 129$	0 , +25	26262
SHEt	$0 \cdot 127$	+ 8 , +45	28210
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	$0 \cdot 124$	-30 ", +30	26319
$n-\mathrm{C}_{5} \mathrm{H}_{12}$	$0 \cdot 118$	$-20, \cdots+50$	27691
OMePr	$0 \cdot 116$	-0.5, + +40	28952
OEt_{2} *	0.116	0 , $2+35$	28550
$\mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{Me}$ *	$0 \cdot 116$	$-10, \ldots+40$	33351
$\mathrm{C}_{6} \mathrm{H}_{6} \ldots \ldots \ldots$.	$0 \cdot 113$	$+42, \ldots+100$	32295
$n-\mathrm{C}_{6} \mathrm{H}^{2}$	$0 \cdot 108$	$-10 \cdots+90$	31679
OEtPr	$0 \cdot 107$	+20 " +60	31160
$\mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{Et} *$	$0 \cdot 107$	+30 , +70	37077

Subs	$1 / M^{\frac{1}{2}}$.	e.	Δ
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$		-92° to $+15^{\circ}$	391
	$0 \cdot 103$	-70 , +	289
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(c i s-)$	$0 \cdot 102$	+23 , + 49	2921
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (trans	$0 \cdot 102$	+ $27 \ldots+59$	3100
$n-\mathrm{C}_{7} \mathrm{H}$	$0 \cdot 100$	63 , - 40	3735
OPr_{2}	0.099	+ 8 " +90	34
$\mathrm{CH}_{3}{ }^{\text {. }}$	0.099	$+40 \%+80$	133
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	0.094	- 35 , - 15	42
$\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{CO}_{2}$	0.093	$+45 \%+121$	39
$\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{CO}$	0.093	+45 , +125	39
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	0.090	0 0 $\quad+30$	32
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}$	0.090	+112 \quad, +209	48955
$\bigcirc-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{O}$	0.0811	+175 ", +215	486
CCl_{4}	0.081	-19 , +20	3391
$\mathrm{C}_{4} \mathrm{H}_{9} \cdot \mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$ (iso)	0.0795	$+90 \%+170$	82
	0.077	+ 26 " + 145	9729
	0.0767	0 ,, + 30	5334
	0.0729	$+10 \%+150$	38082
$\mathrm{C}_{6} \mathrm{H}$	0.070	-30 , + 18	43000
CH_{2}	$0 \cdot 108$	-87 ", +38	2935

* Calculated from vapour-pressure-temperature data (International Critical Tables, Vol. III).
\dagger Egan and Kemp, J. Amer. Chem. Soc., 1938, 60, 2097.
Other data from values of A and B (International Critical Tables, Vol. III).
sented by alcohols and acids, it has been found that a simple relation exists between the formula weight and the heat of vaporisation.

The data are plotted in the figure, from which it is apparent that there is very approxim-
ately a linear relation between $\log \Delta H_{0}$ and the reciprocal of the root of the formula weight. A considerable scatter is observed for substances of greater weight, but the agreement is remarkably good for those of lower weight, and is striking in view of the temperature range. The line drawn in the figure is given by

$$
\begin{equation*}
\log \Delta H_{0}=4.93-4 / M^{\mathbf{t}} \tag{3}
\end{equation*}
$$

and values of $\log \Delta H_{0}$ - calculated from this equation rarely deviate by more than 10% from (and are usually less than 5% from) the observed value. It is doubtful whether any theoretical significance can be attached to this relation, since the heat of vaporisation would not be expected to be simply a function of mass. Furthermore, such a relation implies that isomeric substances have identical heats of vaporisation, which is of course not the case. On these considerations alone, the suggested relation is not claimed as other than an approximate rule. It can, however, be shown to lead to a number of generalisations which have been suggested.

Recently, Burnop (J., 1938, 826) has shown that the empirical relation

$$
b=8 M^{4}+M \log T_{\mathrm{B}}
$$

is an additive function where M and T_{B} are the formula weight and the boiling point respectively. By examining a large number of compounds of different classes, he obtained values of b from which he derived atomic and structural values. This relation can be shown to follow from the empirical rule proposed above for the heats of vaporisation, and it appears that Burnop's use of the boiling point is significant only in that it affords a comparison of this function at temperatures corresponding to equal vapour pressures. The relation is perfectly general and holds for all temperatures so long as they correspond to a given vapour pressure. Such a conclusion is probably true for most empirical relations involving boiling point. It has been shown that the vapour-pressure-temperature relation can be expressed quite accurately over a restricted temperature range by

$$
\log p=\log 760+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}-\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T
$$

Transposing, and taking logarithms, we have

$$
\log \left(\log 760+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathbf{B}}-\log p\right)=\log \Delta H_{\mathbf{0}}-\log 2 \cdot 303 \boldsymbol{R}-\log T
$$

and substituting relation (3) for $\log \Delta H_{0}$, we have

$$
\log \left(\log 760+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathbf{B}}-\log p\right)=4 \cdot 93-4 / M^{\mathbf{t}}-\log 2 \cdot 303 \boldsymbol{R}-\log T
$$

Again, transposing and multiplying throughout by M, we have

$$
\begin{equation*}
M\left\{4 \cdot 93-\log 2 \cdot 303 \boldsymbol{R}-\log \left(\log 760 / p+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}\right)\right\}=4 M^{\ddagger}+M \log T \tag{4}
\end{equation*}
$$

It has been pointed out above that $\log 760+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}$ shows only a small variation from substance to substance. Since, however, the left-hand side of (4) involves the logarithm of $\log 760+\Delta H_{0} / 2 \cdot 303 R T_{\mathrm{B}}$, it follows that for an arbitrarily chosen value of p the coefficient of M will remain sensibly constant for all normal substances. Relation (4) may then be written as $\alpha M=4 M^{4}+M \log T$, i.e., the right-hand side is a function which is proportional to the formula weight, the proportionality constant α being a function only of the arbitrarily chosen value of p, the vapour pressure corresponding to T. It thus follows that such a function must be additive. Burnop's relation, which is of the same form, is the special case where $p=1 \mathrm{~atm}$.

It will be noticed that the derived relation differs from Burnop's in that the coefficient of $M^{\text {t }}$ is 4 instead of 8 . It will be shown later by a few examples that the value 4 does give an additivity of the same order of accuracy.

Table II shows the results of a test of this additivity at temperatures other than the boiling point. Data for two ethers, three esters, and two hydrocarbons have been interpolated from vapour-pressure-temperature data given in the International Critical Tables. Values of $4 M^{4}+M \log T$ are given under the heading of the compound and have been calculated from temperatures corresponding to vapour pressures given in col. 1.

That the values are additive is shown by the increment for a CH_{2} group given under
$\Delta \mathrm{CH}_{2}$. These values are, at a given pressure, in good agreement for the three classes of compound. Furthermore, the relation certainly holds over the wide pressure range $760-100 \mathrm{~mm}$. These facts are considered sufficient indication of the essential correctness of the theory.

Now Burnop has shown that his function is constitutive and, in addition to atomic values, has calculated values for various constitutional features. For example, he finds

Table II.

| $p, \mathrm{~mm}$. | $\mathrm{Et}_{2} \mathrm{O}$. | $\Delta \mathrm{CH}_{2}$. | EtPrO. $\mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{Me} . \Delta \mathrm{CH}_{2}$. | $\mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{Et}$. | $\Delta \mathrm{CH}_{2} \cdot \mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{Pr}$. | $\mathrm{CH}_{4} \cdot$ | $\Delta \mathrm{CH}_{2} . \mathrm{C}_{2} \mathrm{H}_{6}$. | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 760 | $218 \cdot 5$ | $41 \cdot 4$ | $259 \cdot 9$ | $221 \cdot 1$ | $40 \cdot 6$ | $261 \cdot 7$ | $41 \cdot 4$ | $303 \cdot 1$ | $48 \cdot 8$ | $41 \cdot 3$ | $90 \cdot 1$. |
| $316 \cdot 2$ | $216 \cdot 0$ | $41 \cdot 0$ | $257 \cdot 0$ | $218 \cdot 4$ | $41 \cdot 3$ | $259 \cdot 7$ | $39 \cdot 9$ | $299 \cdot 6$ | $48 \cdot 1$ | $40 \cdot 7$ | $88 \cdot 8$ |
| $199 \cdot 5$ | $214 \cdot 9$ | $40 \cdot 7$ | $255 \cdot 6$ | $217 \cdot 3$ | $40 \cdot 2$ | $257 \cdot 5$ | $40 \cdot 6$ | $298 \cdot 1$ | $47 \cdot 8$ | $40 \cdot 5$ | $88 \cdot 3$ |
| 100 | $213 \cdot 1$ | $40 \cdot 5$ | $253 \cdot 6$ | $215 \cdot 7$ | $39 \cdot 7$ | $255 \cdot 4$ | $40 \cdot 6$ | $296 \cdot 0$ | $47 \cdot 5$ | $40 \cdot 3$ | $87 \cdot 8$ |

it necessary to assign a value of $16 \cdot 1$ to a double bond, and $17 \cdot 6$ to a six-membered ring. Clearly, the theory worked out above cannot account for constitutive influences. A recalculation of his data, however, clears up this difficulty and further establishes the theoretical relation.

It has been shown that the function is proportional to the formula weight. The results of a recalculation of some of the data, using the theoretical function $4 M^{\ddagger}+M \log T_{\mathrm{B}}$, are given under $b_{\text {obs. }}^{\prime}$ in Table III. The ratio $b_{\text {obs. }}^{\prime} / M=\alpha$ is given in the last column, and it will be seen that this is remarkably constant, having a mean value of 2.99 . The theoretical value can be calculated from (4), according to which

$$
\alpha=4.93-\log 2 \cdot 303 \boldsymbol{R}-\log \left(\log 760 / \nmid 力+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}\right)
$$

Table III.

Substance.	b^{\prime} obs.	b^{\prime} calc. .	$b^{\prime}{ }_{\text {obs }} / \mathrm{M}$.	Substance.	b^{\prime} obs. .	b^{\prime} calc. ${ }^{\text {c }}$	$b^{\prime}{ }_{\text {obs }} / \mathrm{M}$.
Paraffins:				Acetylenes:			
CH_{4}	$48 \cdot 8$	47.9	$3 \cdot 04$	CH : CH	$79 \cdot 3$	$77 \cdot 8$	3.05
$\mathrm{C}_{2} \mathrm{H}_{6}$	$90 \cdot 1$	$89 \cdot 7$	$3 \cdot 00$	$\mathrm{CH}: \mathrm{C} \cdot \mathrm{CH}_{3}$	$121 \cdot 3$	119.7	3.03
$\mathrm{C}_{3} \mathrm{H}_{8}$	$130 \cdot 4$	$131 \cdot 6$	$2 \cdot 96$	$\mathrm{CH}: \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$	162.5	$161 \cdot 6$	$3 \cdot 01$
$\mathrm{C}_{4} \mathrm{H}_{10}$	171.8	173.5	$2 \cdot 96$	$\mathrm{CH}: \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{3} \quad \ldots$	$202 \cdot 8$	203.5	2.99
$\mathrm{C}_{5} \mathrm{H}_{12} \ldots \ldots \ldots \ldots \ldots \ldots . .$.	213.3	$215 \cdot 4$	$2 \cdot 96$	Diolefins:			
$\mathrm{C}_{6} \mathrm{H}_{14} \ldots \ldots \ldots \ldots \ldots \ldots .$.	$255 \cdot 0$	$257 \cdot 3$	$2 \cdot 96$	Diolefins: CH_{2}	$120 \cdot 8$	119.7	$3 \cdot 02$
cycloParaffins :				$\mathrm{CH}_{2}: \mathrm{CH} \cdot \mathrm{CH}: \mathrm{CH}_{2} \ldots$	$162 \cdot 6$	$161 \cdot 6$	$3 \cdot 01$
${ }_{\left[\mathrm{CH}_{2}\right]_{3} \ldots \ldots \ldots \ldots}$	$125 \cdot 1$	125.6	2.98	$\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}_{3}$	$203 \cdot 0$	$203 \cdot 5$	$2 \cdot 99$
$\left[\mathrm{CH}_{2}\right]_{4} \ldots \ldots \ldots \ldots \ldots \ldots$	$167 \cdot 8$ 109.3	167.5	3.00 2.99	Alkyl chlorides :			
$\left[\mathrm{CH}_{2}\right]_{5}$. $\ldots \ldots \ldots \ldots \ldots$.	$209 \cdot 3$	$209 \cdot 4$	$\stackrel{2.99}{2.99}$	$\mathrm{CH}_{3} \mathrm{Cl}$................	149.6	$151 \cdot 1$	2.96
$\left[\mathrm{CH}_{2}\right]_{6} \quad \ldots \ldots \ldots \ldots \ldots$	250.9	$251 \cdot 3$	2.99	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \ldots \ldots \ldots \ldots \ldots .$.	190.6	$193 \cdot 3$	$2 \cdot 95$
Olefins:				$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl} \ldots \ldots \ldots \ldots \ldots \ldots$.	$232 \cdot 3$	$234 \cdot 8$	2.96
$\mathrm{CH}_{2}: \mathrm{CH}_{2} \ldots \ldots \ldots \ldots \ldots$	$83 \cdot 4$	83-8	2.98	Aromatic hydrocarbons :			
$\mathrm{CH}_{2}: \mathrm{CH}^{2} \mathrm{CH}_{3} \ldots \ldots \ldots \ldots$.	$124 \cdot 9$	125.7	2.97		$234 \cdot 3$	$233 \cdot 3$	$3 \cdot 00$
$\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3} \quad \cdots$	$166 \cdot 2$ 208.4	$167 \cdot 6$ 209.4	2.97 2.98	$\mathrm{C}_{6} \mathrm{C}_{6} \mathrm{H}_{5} \times \mathrm{CH}_{3} \ldots \ldots \ldots \ldots .$.	$275 \cdot 9$	$275 \cdot 2$	$3 \cdot 00$
$\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{3}$	208.4	209.4 251.3	2.98 2.97	$\mathrm{C}_{6} \mathrm{H}_{5}^{5} \mathrm{C}_{2} \mathrm{H}_{5} \ldots \ldots \ldots . .$.	318.1	$317 \cdot 1$	$3 \cdot 00$
$\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{3}$	$249 \cdot 1$	$251 \cdot 3$	$2 \cdot 97$	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \quad \ldots \ldots \ldots .$.	$360 \cdot 2$	$359 \cdot 0$	$3 \cdot 00$
				$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{C}_{4} \mathrm{H}_{9} \quad \ldots \ldots \ldots \ldots$.	$402 \cdot 6$	$400 \cdot 9$	$3 \cdot 00$
				Naphthalene	$390 \cdot 0$	382.9	$3 \cdot 07$
				Decahydronaphthalene	$404 \cdot 9$	$402 \cdot 8$	2.93

and with the previously calculated value of $\log 760+\Delta H_{0} / 2 \cdot 303 \boldsymbol{R} T_{\mathrm{B}}=7 \cdot 46$ and $p=$ $760 \mathrm{~mm} ., \alpha$ can be shown to be $2 \cdot 98$, which agrees well with the mean value obtained above.

From the mean value, a few individual atomic values have been calculated, viz., $\mathrm{H}=$ $2 \cdot 99, \mathrm{C}=35 \cdot 90, \mathrm{O}=47 \cdot 84, \mathrm{Cl}=106 \cdot 1$, and by using these values, b^{\prime} has been calculated by an additive process, the results obtained being given in Table III under $b_{\text {calc. }}^{\prime}$. It is seen that they agree well with the observed values. Such agreement is important, especially so for those compounds which contain rings and double bonds, because it is here that constitutive influences, if present, should cause disagreement with theory. It thus appears that Burnop's constitutive constants were a necessary outcome of his use of 8 as a coefficient of M^{\ddagger}.

